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A b s t r a c t .  Addition of Triton X-100 to planar bilayers 
composed of dioleoyl phosphatidyl choline, diphytanoyl 
phosphatidyl choline or mono-oleoyl glycerol induces 
single channel-like events when electrical conductivity 
across the bilayer is measured. Addition of divalent 
cations or protons causes channels to disappear; single 
channel conductance of remaining channels is not sig- 
nificantly altered; addition of EDTA or alkali (respec- 
tively) reverses the effect. It is concluded that sensi- 
tivity to divalent cations and protons need not be de- 
pendent on specific channel proteins or pore-forming 
toxins, but may be a feature of any aqueous pore across 
a lipid milieu. 

K e y  w o r d s :  Phospholipid bilayers - -  Triton X-IO0 - -  
Ion channels - -  Calcium - -  Zinc - -  Protons 

I n t r o d u c t i o n  

Many endogenous channels (e.g., sodium channel: 
Woodhull, 1973; Gilly & Armstrong, 1982a; Hille, 
1992; potassium channel: Gilly & Armstrong 1982b; 
calcium channel: Nachshen, 1984; Prod'hom, Pietrobon 
& Hess, 1987; Pietrobon, Prod'horn & Hess, 1988; glu- 
tamate receptor: Westbrook & Mayer, 1987; Smart, 
1990; chloride channel: Wolosin & Forte, 1985; Woll 
et al., 1987; Nagel, Natochin & Crabbe, 1988; com- 
municating junctions: Rose & Loewenstein,  1975; 
Obaid, Socolar & Rose, 1983) are sensitive to divalent 
cations like Ca 2+ or Zn 2+ and to protons. The same is 
true of pores induced across the cell plasma membrane 
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or across liposomes and planar bilayers by hemolytic 
viruses (Burnet, 1949; Pasternak & Micklem, 1974; Pa- 
tel & Pasternak, 1985), by bacterial (Avigad & Bern- 
heimer, 1976; Thelestam & Mollby, 1980; Bashford et 
al., 1984, 1986; Liu & Blumenthal, 1988; Menestrina, 
Bashford & Pasternak, 1990; Wilmsen, Pattus & Buck- 
ley, 1990) or animal (Bashford et al., 1986; Mironov et 
al., 1986; Alder et al., 1991) toxins or by immune mol- 
ecules (Gotze, Haupt & Fisher, 1986; Boyle, Langone 
& Borsos, 1979; Bashford et al., 1984; Bashford et al., 
1988a). At low concentration (below critical micellar 
concentration), detergents like Triton X-100 also in- 
duce divalent cation-sensitive pores across the plasma 
membrane of different cells (Avigad & Bernheimer, 
1976; Bashford et al., 1986, 1988b, Madigan, Whit- 
bread & Katz, 1990; Alder et al., 1991). The relative 
efficacy of inhibition by divalent cations and protons is 
generally H + > Zn 2+ > Ca 2+ > Mg 2+, with approxi- 
mate pK or pM 2+ values (concentration at which leak- 
age across the membrane or bilayer is inhibited by 50%) 
around 10 -5, 10 -4, 10 -3 and 10 .2 M, respectively. In 
the case of induced pores, these concentrations vary 
more with the amount of agent, than with the type of 
agent, added (e.g., Micklem et al., 1988). Exceptions 
to the above generalization occur when divalent cations 
such as Ca 2+ (lymphocyte perforin: Henkart, 1985) or 
protons (diphtheria toxin: Sandvig & Olsnes, 1980; in- 
fluenza virus: Maeda & Ohnishi, 1980) are required 
for the formation of pores: in this case the apparent sen- 
sitivity is much decreased [e.g., Ca 2+ and perforin: 
Bashford et al. (1988a)], whereas sensitivity to a non- 
activating cation is unaffected [e.g., Zn 2+ and perforin: 
Bashford et al. (1988a)] or increased [e.g., Zn 2+ and Es- 

cherichia coli haemolysin: Menestrina et al. (1990)]. 
The question therefore arises as to where the lig- 

and(s) for binding cations with efficacy H + > Zn 2+ > 
Ca 2+ > Mg 2+ are: on membrane proteins, on membrane 
lipids, on both, or on neither? To attempt an answer to 
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this quest ion,  we  have  inves t iga ted  the pro ton  and di- 

va len t  ca t ion  sens i t iv i ty  o f  pores  i nduced  by  a non-  
cha rged  agent ,  n a m e l y  Tr i ton  X-100,  across  l ip id  bi- 

layers  o f  de f ined  compos i t ion :  we  f ind that, regard less  

o f  whe the r  the l ipid b i layer  is cha rged  or not, the sen- 

s i t iv i ty  to c losure  by protons  and d iva len t  ca t ions  is 
H + > Zn  2+ > Ca 2+ > M g  2+. W e  there fore  conc lude  

that  se lec t iv i ty  o f  inh ib i t ion  by p ro tons  and d iva len t  

cat ions does  not  necessa r i ly  depend  on the p resence  o f  

speci f ic  l igands  on proteins  o r  lipid. These  results  have  

been  repor ted  in b r ie f  at mee t ings  ( L e v e t  al., 1992; 

Pas te rnak  et al., 1992). 

Materials and Methods 

MATERIALS 

Diphytanoyl phosphatidylcholine (DPhPC) was obtained from Avan- 
ti, dioleoyl phosphatidylcholine (DOPC) and mono-oleoyl glycerol 
(GMO) from Sigma. Triton X-100 was obtained either from Merck 
(Germany) for initial experiments in St. Petersburg, Russia or from 
BDH Chemicals, Poole (UK) for later experiments in London. The 
impurities in the BDH sample are given as: water, 0.1%; sulfated ash, 
0.1%; free alkali (NH3), 0.002%; free acid (CH3COOH), 0.002%. At 
the highest concentration of triton used (10 _5 M), the contamination 
of free acid is approximately 10 -7 M. The conductance of a 0.1% so- 
lution of BDH triton in double distilled water was not significantly 
different from water itself (and 10 -5 M triton--the highest concen- 
tration used--is approximately 100-fold less than 0.1%). Since es- 
sentially similar results were obtained with regard to channel forma- 
tion, ion selectivity and proton and divalent cation sensitivity in St. 
Petersburg and London, and with triton concentrations varying from 
10 -5-10-~0 M, it is unlikely that contaminations in triton account for 
the present results. 

METHODOLOGY 

Planar bilayer membranes (BLM) were prepared according to the 
modified Schindler (1980) procedure. They were formed from two 
lipid monolayers without organic solvent across a 10-20 btm diame- 
ter hole generated by a hot wire through a 10 btm thick Teflon film; 
formation of BLM was monitored by an increase in capacitance. 
Electrical measurements were made in voltage clamp conditions. 
Current was measured with Ag/AgC1 electrodes connected to an op- 
erational amplifier (OP 121 Burr-Brown). Data were either record- 
ed on a chart recorder or on video tape by using a Biologic PCM In- 
strumentation Recorder and subsequently analyzed by using Cam- 
bridge Electronic Design Patch and Voltage-Clamp software. The 
compartment connected to virtual ground was called cis; voltage 
signs refer to the cis compartment; at positive voltages cations move 
from cis to trans. KC1 buffered to pH 7.4 with 5 mM HEPES or tris 
HC1 was used. All experiments were performed at room temperature. 

Triton X-t00 from a stock aqueous solution was added to a dis- 
persion of lipid vesicles in buffered KC1 solution and the system al- 
lowed to equilibrate for 5-15 min before formation of the lipid bilayer. 
Single channel activity was usually observed on formation of the 
membrane. Channel activity was never observed with DPhPC or 
GMO alone; samples of DOPC that showed channel activity were dis- 
carded. Bilayers of DPhPC, DOPC or GMO, to which triton was 
added only by injection into the aqueous medium, showed no chan- 
nel activity. Channel activity disappeared if the membrane broke and 
was reformed. To generate further Triton X-100 channels, 0.5 btl 

aliquots of stock Triton X-100 solutions were added by Hamilton sy- 
ringe to each chamber. Practically all bilayer membranes formed af- 
ter this treatment showed that Triton X-100 induced conductivity. In 
either case, Triton X-100 was present in the cis and trans compart- 
ments to a final concentration which was enough for the formation of 
single channels in the BLM and varied from 10-1~ 9 M in the first 
case, and from 10-7-10 -5 M in the second one. 

Reversal potential ("I a) was determined in a fivefold gradient of 
KC1. Selectivity (t+) was calculated from the re'eersal potential where 
t+ is defined as 

t+ = 1/211 + W/{(RT/F)ln([K+]trans/[K+]cis)}] 

where R, T and F have their usual meanings. 

Results 

D P h P C  BILAYERS 

Add i t i on  o f  low concen t ra t ions  o f  Tr i ton  X - 1 0 0  to pla- 

nar b i layers  c o m p o s e d  of  D P h P C  resul ts  in the appear-  

ance  o f  ' s i ng l e  c h a n n e l ' - l i k e  even ts  (Fig. 1). The  am-  

p l i tude  o f  the c o n d u c t a n c e  steps var ies  f rom exper i -  
men t  to expe r imen t ,  f r o m  approx.  10 pS to > 1,000 pS 

(0.1 m KCl) .  Smal l  conduc t ance  steps of ten  change  

spon taneous ly  to large steps and occas iona l ly  the re- 
ve rse  is true; there  is no cor re la t ion  wi th  the amoun t  o f  

tr i ton added  ( 1 0 - m - 1 0  -5  M). I /V plots  are near ly  l in-  

ear  even  when  the solut ions bathing the m e m b r a n e  have  
d i f fe r ing  KCl  concent ra t ions .  M e a s u r e m e n t  o f  the re- 

versal  potentials under these condi t ions  (e.g., 0.1 and 0.5 
m KCl  cis  and t rans)  reveals  se lec t iv i ty  for K + ove r  C1- 

rang ing  f rom zero  (t+ o f  0.5) to occas iona l ly  h igh ly  

ca t ion  se lec t ive  (t+ o f  0.98);  the ave rage  for  16 exper -  

iments  was 0.60 -+ 0.15. 
In the p re sence  o f  d iva len t  cat ions,  c o n d u c t a n c e  is 

decreased ,  due to success ive  d i sappearance  o f  ' s ing le -  
c h a n n e l ' - l i k e  f luc tua t ions  (Fig. 1); the conduc t ance  o f  

res idual  channels  in the p resence  o f  d iva len t  ca t ions  

(moda l  va lue  280 pS) is s imi la r  to that  o f  channels  pri-  
or  to the addi t ion  o f  d iva len t  ca t ions  (moda l  va lue  240 

pS)  (Fig.  1E). Add i t ion  o f  E D T A  reverses  the effect .  
L o w e r i n g  pH  has an e f fec t  s imi lar  to the addi t ion  o f  di- 

va len t  cat ions (Fig. 1D). W h e n  the re la t ive  e f f i cacy  of  
H + and d iva len t  ca t ions  in all  expe r imen t s  ana lyzed  is 

c o m p a r e d  (Fig. 2), it is c lear  that  H + > Zn  2+ > Ca ~+ 
or M g  2+ [50% inh ib i t ion  at approx.  10 -8  M (H +) 10 -4  
M (Zn 2+) and 10 -2  M (Ca 2+ or Mg2+)]. There  is no cor-  

re la t ion  b e t w e e n  sensi t iv i ty  to protons  and M a+ and the 

ampl i tude  o f  the conduc t ance  or  its ca t ion  se lec t iv i ty .  
T r i t o n - i n d u c e d  channe l s  are o b s e r v e d  w h e n  the  

m e m b r a n e  is ba thed  in a so lu t ion  o f  CaC12 (Fig.  3). 
S ing le  channe l  f luc tua t ions  can be  seen;  these  are abol- 
i shed  at low pH and res tored  at neut ra l i ty  (Fig. 3). 

D O P C  BILAYERS 

D O P C  bi layers  g ive  resul ts  essen t ia l ly  s imi la r  to those  
o b t a i n e d  wi th  b i l aye r s  c o m p o s e d  o f  D P h P C :  s ing le  
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Fig. l. Effect of protons and divalent cations on Triton-X-100-induced channels in DPhPC bilayers. Triton X-100 (5.10 6 M), in 0.005 M 
HEPES (A,C,D) or 0.005 M tris (B) pH 7.4 and 0.1 M KC1 (cis)/0.5 M KC1 (trans) (A,C,D) or 0.1 M KC1 (cis and trans) (B). The cation selec- 
tivity, t+, was 0.5 (.4), 0.7 (C) and 0.6 (D). ZnSO4, CaC12, MgC12, EDTA and KC1/KOH (cis and trans) were added to give the final concen- 
tration indicated. (E): Amplitude distribution of the Triton-X-100-induced channels, presented in B without and with 0.005 M CaC12 (cis and 
trans). The ordinate frequency indicates the number of occasions on which each conductance level on the abscissa (in pS) was observed in records 
containing 182 (upper panel) and 60 (lower panel) resolvable levels, respectively. 

channel- l ike  events, of  varying size, are observed (Fig. 
4). Addit ion of  Ca 2+ decreases such fluctuations, which 
are restored by EDTA (Fig. 4). 

G M O  BILAYERS 

Addi t ion  of  tr i ton to bilayers of uncharged l ipids gives 
the same result  as addi t ion to phosphol ip id  bi layers .  
Triton-treated bilayers composed of  GMO, for example,  
show single channel- l ike  f luctuations (Fig. 5A). Fluc-  
tuations are of  varying size ( - 2 0  to > 1,000 pS; not 
shown)  and select ivi ty  (mean t+ 0.75 -+ 0.1); an exam- 
ple of  a 30 pS pore having selectivity t+ 0.7 is illustrated 
in Fig. 5B. Note the l ineari ty of  this I/V plot  between 
_+ 100 mV; at vol tages greater  than this, current in- 

creases.  Addi t ion  of  Ca 2+ reduces  channel  act ivi ty  
(Fig. 5A). Protons have the same effect. For  example ,  
in the exper iment  i l lustrated in Fig. 5C, conductance at 
pH 4 is zero (trace i), whereas at pH 7, two predomi-  
nant conductance states are seen: a f l ickering high con- 
ductance (trace ii) and a stable, low conductance state 
(trace iii). Analysis  of  these conductance states (Fig. 
5C, lower  panels)  reveals  modal  values of  7 pA (trace 
ii) and 3 pA (trace iii). 

The relative efficacy of  protons and divalent cations 
from all exper iments  analyzed is shown in Fig. 6. As 
with bi layers  composed  of  DPhPC (Fig. 2) or DOPC 
(not  shown),  H + > Zn 2+ > Ca 2+ or Mg 2+ [50% inhibi- 
tion at approx.  10 .8  M (H+), 10 4 M (Zn 2+) and 10 -2 
M (Ca 2+ or Mg2+)]. As with DPhPC bilayers,  there is 
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Triton-X-100-induced conductance in DPhPC 
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Fig. 5. Triton-X-I00-induced channels in GMO 
bilayers. (A) Effect of Ca 2+ on single channels. 
Triton X-100 (10 -I~ M), in 0.05 M tris pH 7.4 and 
0.1 M KCI (cis and trans). Applied potential was 
50 mV. CaCI 2 (cis and trans) was added to give a 
final concentration indicated. (B) Current-voltage 
characteristic of single channels. Triton X-100 
(5.10 -6 M), in 0.005 M HEPES pH 7.4 and 0.i M 
KC1 (cis)/0.5 M KCI (trans). A cation selectivity, 
t+, of 0.7 was calculated from the reversal 
potential (15 mV). (C) Effect of pH on single 
channels. Triton X-100 (5.10 .6 M), in 0.05 M 
HEPES and 0.1 M KC1 (cis)/0.5 u KC1 (trans), t+ 
= 0.65. Currents (upper panel) at - 5 8  mV and 
pH 4 (i) or pH 7 (ii and iii). Amplitude 
distributions (lower panel) for the sections of the 
current records labeled i, ii and iii, respectively. 

no correlation between sensitivity to protons or M 2+ and 
the amplitude of the conductance or its cation selectiv- 
ity. 

D i s c u s s i o n  

The results of this investigation allow two conclusions 
to be drawn. First, discrete channels of varying con- 
ductance (10 to > 1,000 pS; 0.1 M KC1) and selectivi- 
ty (t+ 0.5 [unselective] to 0.9 [cation selective]) can be 
induced across bilayers of  phospholipid or GMO by 
low concentrations of a detergent such as Triton X-100. 
Similar channels have been observed with triton and oth- 
er non-ionic detergents by Tanaka, Furman and Barchi 
(1986). That channels are never anion selective is c o m -  

patible with the observations of Van Zutphen et al. 
(1972) and Gotlib et al. (1992), who observed transient 
high cation selectivity (K + >> Na +) with lipid mem- 
branes- isola ted from natural sources--after addition of 
triton. Possible explanations for cation selectivity are 
similar to explanations for sensitivity to protons and 
M 2+ and are discussed below. The structures of triton- 
induced channels are at present unclear, but may re- 
semble those seen by atomic force microscopy of lipid 
detergent bilayers (Lacapere, Stokes & Chatenay, 1992). 
Since there is no correlation between conductance and 
selectivity--in contrast to channels formed by toxins 
such as pneumolysin (Korchev, Bashford & Pasternak, 
1992) or to pores across certain synthetic, track-etched 
filters (Y.E. Korchev and T.K. Rostovtseva, unpub- 
lished results), for which high selectivity con'elates with 
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Triton-X-100-induced conductance in GMO 
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20 to 1,300 pS. 

low conductance--it is possible that high conductance 
channels having high selectivity represent a narrow an- 
nulus between a large "plug" and the surrounding bi- 
layer, the "plug" perhaps made up of triton + lipid in 
micellar form (e.g., Alonso & Goni, 1983; Gotlib et al., 
1992). Triton-induced channels show little voltage de- 
pendency (at least between _+ 100 mV), as noted also 
by Tanaka et al. (1986); in this regard they resemble 
channels formed by diphtheria toxin, melittin, heat 
shock proteins, transit (signal) peptides or viral fusion 
peptides (see Pasternak, 1991) as well as pores across 
synthetic, track-etched filters (Lev et al., 1992, 1993; 
Pasternak et al., 1993), rather than channels formed by 
agents such as Staphylococcus aureus o~ toxin (Me- 
nestrina, 1986), lymphocyte perforin (Young et al., 
1986; Bashford et al., 1988b), perfringolysin (Mene- 
strina et al., 1990), aerolysin (Wilmsen, Pattus & Buck- 
ley, 1990) or pneumolysin (Korchev et al., 1992). 

Second, conductivity decreases on the addition of 
divalent cations and protons (efficacy H + > Zn 2+ > 
Ca 2+ or Mg2+), regardless of the composition of the 
lipid bilayer (DOPC, DPhPC or GMO). That low (raM) 
concentrations of a divalent cation such as Ca 2+ de- 
crease channel activity in 0.1 M KC1, while pure CaC12 
at (0.05/0.1 M) shows fluctuations as high as 2 nS (Fig. 
3) is reminiscent of other situations (e.g., Ca 2+ channel; 
Pietrobon et al., 1988). An effect of low pH on triton- 
induced conductivity across bilayers has previously 
been reported by Schlieper and de Robertis (1977). The 
conductance of single channels is relatively unaffected 
by protons or divalent cations (e.g., Fig. 1E; Fig. 4; Fig. 
5A); rather, the decrease in conductivity is due to the 
disappearance of channels as a result of closure, dis- 
persal or some other effect (cf Lev et al. 1993). The 
similarity of action of divalent cations on leakage 
through triton-induced lesions in cells (Avigad & Bern- 
heimer, 1976; Bashford et al. 1986, 1988b; Madigan et 

al., 1990) and liposomes (Alder et al., 1991), is to be 
noted. Since Triton X-100 does not possess ligands se- 
lective for divalent cations and protons, these would ap- 
pear to be on the lipid. Yet neither DOPC, DPhPC nor 
GMO possess such sites (dissociation constant of Ca 2+ 
from phosphatidylcholine bilayers is around 50-1000 
mM (McLaughlin, Grathwohl & McLaughlin, 1978; 
Akutsu & Seelig, 1981), not < 10 mM) and one must 
conclude that they are contributed either by impurities 
or that they are due to some other cause. Impurities in- 
clude traces of free fatty acid or oxidation products (in 
the case of DOPC or GMO) that could be well below 
the limits of detection (since single channel activity is 
essentially a consequence of single molecular events); 
if GMO is deliberately oxidized, for example, single 
channels with t+ of 0.8 appear (Rostovtseva & Lev, 
1986). Other causes include the possibility of a nega- 
tive surface charge, since negative surface potentials 
have been reported for neutral lipid membranes (e.g., 
Tatulian, 1983; Rostovtseva, Osipov & Lev, 1987). 
Furthermore, water molecules may be polarized at a 
hydrophobic surface (Lee, McCammon & Rossky, 
1984), creating, in effect, a negative charge on the aque- 
ous side of a layer of water molecules and the greater 
solubility of cations (e.g., K +) compared with anions 
(e.g., C1-) in nonaqueous solvents (Levitt, 1988) may 
lead to similar consequences. While such effects may 
account for the selectivity of channels for cations over 
anions, it is difficult to envisage how they are able to 
confer differing sensitivity to H +, Zn 2+ and Ca 2+. 
Moreover, triton-induced channels are as sensitive to in- 
hibition by divalent cations whether they show no cation 
selectivity (t+ 0.5) or high cation selectivity (t+ 0.9), 
which suggests that selectivity and sensitivity result 
from different molecular interactions. 

In conclusion, our results extend previous obser- 
vations of ion current fluctuations in the absence of 
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channel proteins (Antonov et al., 1980; Yoshikawa et 
al., 1988; Woodbury, 1989) to another property of en- 
dogenous ion channels (Hille, 1992) and toxin-induced 
pores (Bashford et al., 1986): their sensitivity to protons 
and divalent cations. 
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